Onsager’s algebra and partially orthogonal polynomials

نویسنده

  • G. von Gehlen
چکیده

The energy eigenvalues of the superintegrable chiral Potts model are determined by the zeros of special polynomials which define finite representations of Onsager’s algebra. The polynomials determining the low-sector eigenvalues have been given by Baxter in 1988. In the Z3−case they satisfy 4-term recursion relations and so cannot form orthogonal sequences. However, we show that they are closely related to Jacobi polynomials and satisfy a special ”partial orthogonality” with respect to a Jacobi weight function. PACS: 02.30.I, 75.10.J, 68.35.R

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials

Finite-dimensional representations of Onsager’s algebra are characterized by the zeros of truncation polynomials. The ZN -chiral Potts quantum chain hamiltonians (of which the Ising chain hamiltonian is the N = 2 case) are the main known interesting representations of Onsager’s algebra and the corresponding polynomials have been found by Baxter and Albertini, McCoy and Perk in 1987-89 consideri...

متن کامل

Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space

A new method for constructing Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space is presented. In earlier research, we only dealt with scalar-valued weight functions. Now the class of weight functions involved is enlarged to encompass Clifford algebra-valued functions. The method consists in transforming the orthogonality relation on the open unit ball into ...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

The Calogero Model : Integrable Structure and Orthogonal Basis

Abstract. Integrability, algebraic structures and orthogonal basis of the Calogero model are studied by the quantum Lax and Dunkl operator formulations. The commutator algebra among operators including conserved operators and creation-annihilation operators has the structure of the W-algebra. Through an algebraic construction of the simultaneous eigenfunctions of all the commuting conserved ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002